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A B S T R A C T :  In this paper, the non-local theory of elasticity is applied to obtain the behavior of a 
Grifflth crack in the piezoelectric materials under anti-plane shear loading for permeable crack surface 
conditions. By means of the Fourier transform, the problem can be solved with the help of a pair 
of dual integral equations with the unknown variable being the jump of the displacement across the 
crack surfaces. These equations are solved by the Schmidt method. Numerical examples are provided. 
Unlike the classical elasticity solutions, it is found that no stress and electric displacement singularity 
is present at the crack tip. The non-local elastic solutions yield a finite hoop stress at the crack tip, 
thus allowing for a fracture criterion based on the maximum stress hypothesis. The finite hoop stress 
at the crack tip depends on the crack length and the lattice parameter of the materials, respectively. 
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1 I N T R O D U C T I O N  

In the theoretical studies of crack problems of 

the piezoelectric materials, several different electric 

boundary conditions at the crack surfaces have been 

proposed by numerous researchers [1~7] . The basic 

theory and the problems of dislocation, crack and 

inclusion of the piezoelectric materials were investi- 

gated in Ref.[1]. The electric saturation crack model 

in the piezoelectric materials was studied in Refs.[2,3]. 

A complete exact solution was obtained in Ref.[3] 

for a single electric saturation crack in an infinite 

piezoelectric media. In fact, cracks in piezoelectric 

materials consist of vacuum, air or some other gas. 

This requires that  the electric fields can propagate 

through the crack, so the electric displacement com- 

ponent perpendicular to the crack surfaces should 

be continuous across the crack surfaces. Along this 

line, the crack problem of piezoelectric materials was 

studied in Ref.[4]. Recently, Dunn [51 and Sosa and 

Khutoryansky[ 6] avoided the common assumption of 

Received 23 August 2001, revised 11 November 2002 

electric impermeability and utilized more accurate 

electric boundary conditions at the rim of an ellipti- 

cal flaw to deal with anti-plane problems of piezoelec- 

tricity. They analyzed the effects of electric boundary 

conditions at the crack surfaces on the fracture behav- 

iors of piezoelectric materials. Most recently, the be- 

havior of a bi-piezoelectric ceramic layer with an inter- 

facial crack has been investigated by using the dislo- 

cation density function and the singular integral equa- 

tion method for two different crack surface boundary 

conditions in Ref.[7], respectively, i.e. permeable and 

impermeable. It is interesting to note that  very differ- 

ent results were obtained with different boundary con- 

ditions. However, these solutions contain stress singu- 

larity. This is not reasonable according to the physical 

nature. The stresses near the tip of a sharp line crack 

in an elastic plane subject to uniform tension, shear 

and anti-plane shear were discussed in Refs.[8~10] by 

use of the non-local theory. These solutions gave fi- 

nite stresses at the crack tips, thus resolving a funda- 

mental problem that persisted for many years. This 
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enables us to employ the maximum stress hypothesis 
to deal with fracture problems in a natural way. The 
solutions in Refs.[8~lO], however, were not exact and 
were reexamined in Refs.[ll,12] using a different ap- 
proach. The dynamic stresses near the tip of a line 
crack or two line cracks in an elastic plane were in- 
vestigated in Refs.[13,14] by use of non-local theory. 
These solutions did not contain any stress singularity. 
To our knowledge, the electro-elastic behavior of the 
piezoelectric materials with a permeable crack sub- 
jected to anti-plane shear and in-plane electric loading 
has not been studied by the non-local theory. 

In the present paper, the behavior of a perme- 
able crack subjected to anti-plane shear in piezoelec- 
tric materials is investigated by use of the non-local 
theory. The traditional concept of linear elastic frac- 
ture mechanics and the non-local theory are extended 
to include the piezoelectric effects. Fourier transform 
is applied and a mixed boundary value problem is re- 
duced to a pair of dual integral equations with the 
unknown variable being the jump of the displacement 
across the crack surfaces. In solving the dual inte- 
gral equations, the jump of the displacement across 
the crack surface expanded in a series of Jacobi poly- 
nomials and the Schmidt method [151 is used. This 

process is quite different from that  adopted in previ- 
ous studies [1~1~ as mentioned above. As expected, 
the solution in this paper does not contain the stress 
and electric displacement singularity at the crack tip. 
The stress field and the electric field for the non-local 
theory are similar to those of the classical elasticity 
solution away from the crack tips. Near the crack tip, 
a lattice parameter tends to control the amplitude of 
the stress and the electric displacement. 

e i s ( I X '  - Xl)r 

D k ( X )  = f [eis(IX' - X l ) w , k ( X '  ) -  
dv  

k = x , y  
(3) 

e l l  ( I X '  - Xl)r k = x , y  
(4) 

where the only difference between the classical elastic 
theory and the piezoelectric theory is in the stress and 
the electric displacement constitutive Eqs.(3), (4) in 
which the stress "rzk(X) and the electric displacement 
D k ( X )  at a point X depends on w,k (X)  and r 
at all points of the body. w and r are the mechanical 
displacement and electric potential. For homogeneous 
and isotropic piezoelectric materials there exist only 

three material parameters, d44(]X' -X])  , e i 5 ( l X ' - X [ )  
and ~ i l ( I X ' - X ( )  which are functions of the distance 
]X' - X]. The integrals in Eqs.(3), (4) are over the 
volume V of the body enclosed within a surface OV. 

As discussed in Refs.[16,17], the form of 

c~44(IX ' - X]), ei5(lX r - Xl)  and e l l ( I X '  - Xl) can 
be assumed such that  the dispersion curves of plane 
elastic waves coincide with those known in lattice dy- 
namics. Among several possible curves the following 
has been found to be very useful 

(C44, ! ! ~ll)~(]X' XI) (5) e15,  ~11) _I (c44 ' e15,  

a ( lX '  - X[)  = So e x p [ - ( f l / a ) 2 ( X  , - X ) ( X '  - X)] 
(6) 

where fl is a constant, a is the lattice parameter of 
the materials, c44, e15, ~11 are the shear modulus, 
piezoelectric coefficient and dielectric parameter, re- 
spectively, ao is determined by the normalization 

2 BASIC E Q U A T I O N S  OF N O N - L O C A L  

PIEZOELECTRIC MATERIALS 

For the anti-plane shear problem, the basic equa- 
tions of linear, homogeneous, isotropic, non-local 
piezoelectric materials, with vanishing body force 
are[4,10] 

&-x~ + O%z = o (1) 
Ox Oy 

voz( lX '  - X I ) d V ( X '  ) = 1 (7) 

In the present work, the non-local elastic mod- 
uli are given by Eqs.(5) and (6). Substituting Eq.(6) 
into Eq.(7), it can be obtained, in the two-dimensional 
space, that  

oz 0 = l- (fl/a)2 (8) 
71- 

S u b s t i t u t i o n  of Eqs.(5), (6) into Eqs.(3), (4) 

yields 

OD___~ + ODy = 0 (2) 
Ox Oy 

Tkz(X) = L[c~4( lX '  - X l ) w , k ( X ' ) +  

rk z (X)  = f v  a ( IX '  - X l ) a k ~ ( X ' ) d V ( X ' )  

D k ( X )  = I v  a ( IX '  - X I ) D ~ ( X ' ) d V ( X ' )  

]r 
(9) 

k = x , y  
(10) 
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where 

O'kz : C44W,k ~- ei5r k = x ,g  (11) 

Substituting Eqs.(9), (10) into Eqs.(1), (2), re- 
spectively, using Green-Gauss theorem, it can be 
obtained [1~ that  

D~ = elsw,k - eur k = x, y (12) 

Expressions i l l ) ,  (12) are the classical constitutive 
equations. 

3 THE CRACK MODEL 
Consider an infinite piezoelectric body contain- 

ing a Griffith permeable crack of length 2l along the 
x-axis. The piezoelectric boundary-value problem for 
anti-plane shear is considerably simplified if we con- 
sider only the out-of-plane displacement and the in- 
plane electric fields as shown in Fig:l.  As discussed 
in Refs.[7,10], since no opening displacement exists 
for the present anti-plane problem, the crack surfaces 
can be assumed to be in perfect contact. Accord- 
ingly, a permeable condition will be enforced in the 
present study, i.e., both the electric potential and the 
normal electric displacement are assumed to be con- 
tinuous across the crack surfaces. So the boundary 
conditions of the present problem are (In this paper, 
we consider the perturbation stress field and the per- 
turbation electric displacement field) 

r(y~)(x, 0 +) = %(~)(., 0 - )  = ~o Jzl _< z (13) 

D(1) (x, 0 + ) D(2) (x, 0 - ) 
; Ixl _< oo (14) 

r (x, 0 +) = r 0-)  ) 

w(X)(x,0 +) = ~ (2 ) (x ,O- )  = 0 Ixl > z (15) 

~(k)(~,  y) = r ' y) = 0 

for (x 2 + y2)1/2 _+ oo k = 1, 2 (16) 

Note that  all quantities with superscript k(k = 1, 2) 
refer to the upper half plane and lower half plane, ro 
is a magnitude of the stress field. 

L 1 -  
] > 

/ ~ ( l x '  - *1, b '  - vl)[c~4V2w(x',  v ' ) +  

elsV2r ', y')ldx' dy' - / j t  a(Ix' - xl, 0). 

[r +) - Oy,(x' ,O-)ldx' = 0 ( l r)  

f v  ~ ( I . '  - xf, ly' - Yl) [e lsV2w(* ', Y ' ) -  

ei lV2r ' -  f i t  a(]x'  - xl,0 ). 

C I e I JOy(x,  0 +) - Dy (x ,  0-)]dx'  = 0 (18) 

72 = 02 /OX 2 ~-~2 /0y2  i s  the two-dimensional Laplace 
operator. Because of the assumed symmetry in geom- 
etry and loading, it is sufficient to consider the prob- 
lem for 0 < x_< oo, 0 < y < eo only. Under the ap- 
plied anti-plane shear load on the unopened surfaces 
of the crack, the displacement field and the electric 
displacement satisfy the following symmetry condi- 
tions 

w ( x , - y ) = - w ( x , y )  r 1 6 2  (19) 

Using Eq.(19), we find that  

~y~(x, 0 +) - ~y~(x, 0 - )  = o (20) 

D~(x, 0 +) - D~(x, 0-)  = 0 (21) 

Hence the line integrals in Eqs.(17), (18) vanish. By 
taking the Fourier transform of Eqs.(17), (18) with re- 
spect to x', it can be shown that the general solutions 
of Eqs.(17), (18) are identical to those of the following 
equations 

[ d2~(s 'y)  s2~(s,y)]  + 
e 4 4  [ dy 2 

[ : 0  (22) e15 L dY 2 

el5 [ dy ~ s2w(s,Y)] - 

[ d2~(s' Y) s2r y)] = 0 (23) 
eli [ dy 2 

Fig.1 Crack in a piezoelectric material 
body under anti-plane shear 

almost everywhere. Here a superposed bar indicates 
the Fourier transform. 
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The general solutions of Eqs.(22), (23) satisfying 
Eq.(16) are, respectively 

/7 ~(1 ) (x .y  ) = _2 & ( s ) e _ ~  c o s ( , s ) d  s 
71" 

r (x, y) - elhw(1)(x, y) (24) 

/7 _- _2 B l ( s ) e  - ~  cos(xs)ds  
71" 

/7 m(~)(x, y) = _2 A2(s)e ~ cos(xs)ds  
71" 

r  --  e 1 5 w ( 2 ) ( x , y )  ( 25 )  
C l l  

2 f  ~ ( )  ( ) = - -  ~ 2  S e s y  cos  x s  ds 
7r Jo 

where d l  (s), B1 (s), A2(s), B2 (s) are to be determined 
from the boundary conditions. 

The stress field and the electric displacement, 
according to Eqs.(9), (10), are given by, respectively 

r (1)(x y) 2 f ~  yz , , = -- [ - # s A l ( s )  - e15sB1(s)]ds. 
7r Jo 

fo f] dr '  [~(Ix' - xl, Iv' - v l )+  
oo 

c~(Ix' - xl, lY' + Yl)] e-*y' cos(sx ')dx '  (26) 

/7 D(~l)(x.y) = 7 < l s B l ( s ) d ~  dy'. 

? [~(Ix' xl, lv' - y l ) +  

~(Ix' - xl, ly' + vl)] e - ~ '  cos(s~')dx'  (27) 

/7 r(y2)(x,y ) = _2 [ttsA2(s) + elhsB~(s)]ds. 

dy' [~(Ix' - xl. ly' - y l )+  

~(Ix' - ~1, ly' + yl)] e - ~ '  cos(s~')d~'  (28) 

/7 71" 

/ 7 /7  dy '  [~(Ix' - xl, lY' - Yl)+ 

or(Ix' - xl, [y' + yl)]e -*y' cos(sx ')dx'  (29) 

where # = c44 q- e 2 5 / e 1 1  �9 

Using Eq.(6) for c~([X' - XD, we carry out in- 
tegrations on x' and y'. To this end we consider the 

following integrals [is] 

/_~o { s i n { ( x ' + x )  } 
I1 = oQ e x p ( - - p x t 2 )  cos  ~ ( x  / q- x )  d x t  

= (rc/P) l /2exp(-~2/4P)  { cos({x)Sin({x) } (30) 

f0 • = e x p ( - p v  '2 - 7y')dy'  = ~ / p ) 1 / 2 .  

e x p ( 7 2 / 4 p ) [ 1 -  ~ ( 7 / 2 v ~ ) ]  (31) 

2 exp(_t2)dt (32) �9 (~) = ~ 

Hence 

T(1)(Xvz, ,0 +) = - ~  s[#Al(s )  + exhBl(s)l .  

erfc(~s) cos(sx)ds (33) 

/7 D(~) (~, 0+)  = _2 < 1 , B 1  ( s )er fc (~)  cos(s~)d~ 
71" 

(34) 

rY(2z)(x'0-) = 7 s[pA2(s) + e15B2(s)]" 

erfc(es) cos(sx)ds (35) 

/7 D(~) (~ .0_ )  = __2 ~ x , B ~ ( s ) e r f c ( ~ )  cos(sx)ds  
7r 

(36) 
a 

where ~ = ~ ,  erfc(z) = 1 - ~(z) .  

To solve the problem, the jump functions of the 
displacements and the electric potentials across the 
crack surface are defined as follows 

f ~ ( x )  = w(X)(x, 0 +) - w(2)(x, 0 - )  (37) 

f~(x)  = r - r  (38) 

Substituting Eqs.(24) and (25) into Eqs.(37), (38), 
and applying the Fourier transform, it can be ob- 
tained that 

fw(S) = n l  (s) - n2(s)  (39) 

fr = el~[d,(s)  - d2(s)] + Bl ( s )  - B2(s) 
Cl l  (40) 

Substituting Eqs.(33)~(36) into Eqs.(13), (14), it can 
be obtained that 

- #[Al(s) § A2(s)] - e15[Bl(s) + B2(s)] = 0 
(41) 

Bl ( s )  + B2(s) = 0 (42) 
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el5 [AI(s) - A2(s)] + Bl(s)  - B2(s) = 0 (43) 

By solving four Eqs.(37), (41)N(43) with four un- 
known functions and applying the boundary condi- 
tions (13)~(15), it can be obtained that  

/7 1 Sfw(s)erfc(Es) cos(sx)ds - 7o I=1 <- l 
71" 544 (44) 

Zhou Zhengong et al.: Griffith Permeable Crack in Piezoelectric Materials 

~00 ~ 
1 f,a(s) cos(sx)ds = 0 Ixl > 1 (45) 
7r 

Since the only difference between the classical and 
the non-local equations is in the introduction of the 
function erfc@s), it is logical to utilize the classical so- 
lution to convert the system (44), (45) to an integral 
equation of the second kind that  is generally bet ter  

behaved.  For a = 0, then erfc(es) = 1 and Eqs.(44), 
(45) reduce to the dual integral equations for the same 
problem in classical piezoelectric materials. To deter- 
mine the unknown function fw(s), the dual-integral 
Eqs.(44), (45) must be solved. 

4 S O L U T I O N  O F  T H E  D U A L  I N T E G R A L  
E Q U A T I O N S  

The dual integral equations (44), (45) can not be 
transformed into the second Fredholm integral equa- 
tion, because the kernel of the second kind Fredholm 
integral equation in the paper [1~ is divergent, which 
can be written as follows 

/7 g(x, u) = (zu) ~/2 tk(e't)Jo(zt)Jo(ut)dt 

O<_x u<_l  

where Jn(x) is the Bessel function of order n. 

k(et) = -~ ( e ' t )  

lim k (e t t ) r  f o r e ' -  a 
t-+~ 2/31 r 0 

l is the length of the crack. 

J 0 ( x ) ~  cos x - ~ l r  f o r x > > 0  

The limit of tk(e't)Jo(xt)Jo (ut) is not equal to zero for 
t -4 c~. So the kernel L(x, u) in Eringen's paper [1~ 
is divergent. Of course, the dual integral equations 
(44) and (45) can be considered to be a single integral 
equation of the first kind with a discontinuous kernel 
as discussed in Ref.[8]. It is well-known in the litera- 
ture that  integral equations of the first kind are gen- 
erally ill-posed in the sense of Hadamard, i.e. small 
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perturbations of the data  can yield arbitrarily large 
changes in the solution. This makes the numerical 
solution of such equations quite difficult. For over- 
coming the difficult, the Schmidt method [15] is used 
to  solve the dual-integral equations (44), (45). The 
gap functions of the crack surface displacement are 
represented by the following series 

f~,(x) = w(1)(x, 0 +) - w(2)(x, 0 - )  

n(1/2,1/2) ( x 2) 
= anr2n_ 2 ( 1 )  1 - - - ~  

for - l < x < l  y = O  

fw(x) = w(1)(x, 0 +) - w(2)(x, 0 - )  = 0 

1/2 

(46) 

for Ix[ > l y = 0 (47) 

where a,~ is unknown coefficients to be determined and 
PO/2'l/U)(x) is a Jacobi polynomial [ls]. The Fourier 
transformation [19] of Eq.(46) is 

1 
f~(s)  = E anGn-J2n-1(sl)  (48) 

8 

Gn = 2 v ~ ( - 1 )  n-1F(~_~-  1/2) (49) 
( 2)! 

where F(x) and J,~(x) are the Gamma and Bessel 
functions, respectively. 

Substituting Eq.(48) into Eqs.(44), (45), respec- 
tively, Eq.(45) can be automatically satisfied. Then 
the remaining Eq.(44) reduces to the form 

fo E anGn erfc(=s)J2n_1(sl) cos(sx)ds = - - -  
7r 

% 
C44 

(50) 
For a large s, the integrands of the Eq.(50) decrease 
almost exponentially. So they can be evaluated nu-  
merically by Filon's method [2~ Equation (50) can 
now be solved for the coefficients as by the Schmidt 
method [15]. It can be seen in Refs.[12,13]. 

5 N U M E R I C A L  C A L C U L A T I O N S  A N D  
D I S C U S S I O N  

In fracture mechanics, it is of importance to de- 
termine the perturbation stress %z and the pertur- 
bation electric displacement Dy in the vicinity of the 
crack's tips. ryz and Dy along the crack line can be 
expressed, respectively as 

fo ,/_(1) o) - c4_  } 2  erfc(  ). (x 
yz  \ ' 71" 

n = l  
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J2n-~ ( sl) cos(xs)ds (51) 

D( i ) ( x ,O)_  e1_5 ana~ erfc(ss).  
7Y 

cos(  )d  = O) 
C4 4 y z  (52) 

So long as ~ # 0, the semi-infinite integrat ion and the 

series in Eqs.(51) and (52) are convergent for any vari- 

able x. Equat ions  (51) and (52) give finite stresses and 

electric displacements all along y = 0, so there is no 

stress singulari ty at  the crack tips. However, for ~ = 

0, we have the classical stress singulari ty at  the crack 

tips. Wi th in  the range - l  < x < l, T(1)/~0yz is very 

close to unity, and for x > l, ~-(~)/~-0 takes finite val- 

ues diminishing f rom a finite value at x = l to zero at 

x = cr Since s / l  > 1/100 represents a crack length of  

less than  100 a tomic  distances[l~ and  for such submi- 

croscopic sizes o ther  serious questions arise regarding 

the  interatomic ar rangements  and force laws, there- 

fore, we do not  pursue solutions valid at such small 

crack sizes. The  semi-infinite numericM integrals are 

evaluated easily by Filon's m e t h o d  [2~ because of the 

rapid diminut ion of  the integrands.  In all computa-  

tions, the piezoelectric mater ia l  is assumed to  be the  

commercial ly  available piezoelectric PZT-4.  The  ma- 

terial constants  of  PZT-4  are c44 = 2.56 • 101~ N / m  2, 

e15 = 1 2 . 7 c / m  2 and  c l l  = 64.6 • 1 0 - 1 ~  2, respec- 

tively. The  results of the stress field and the electric 

displacement field are plot ted in Figs.2 to 9. 

(• 

-4  

-2  

-8  

d~ ~ -4  
- 12  

--16 ( •  - 6  

f , t i r t t , 

0 4 8 12 0 4 8 12 

Fig.2 The stress at the crack tip versus 
a/2Zl 

(• 

J 

Fig.3 The electric displacement at the 
crack tip versus a/2~l 

( • 10 -8) 

- 5  

--10 

--15 

0.4 

~ - -  0 

--2 

--4 

r 

- 6  

0.8 1.2 1.6 2.0 0.5 1.0 1.5 2.0 

z/1 x/l 

Fig.4 The stress along the crack line versus 
x/l  for a/2~l = 0.000 5 

Fig.5 The electric displacement along the 
crack line versus x/l  for a/2fll = 
0.000 5 
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--12 
i 
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( x l 0  -8) 
1 

f 
0 

--1 

- 2  

- 3  

--4 

0.4 

f 

1.2 1.6 2.0 0.8 1.2 1.6 2.0 

x/1 x/1 

Fig.6 The stress along the crack line versus 
x/l for a/2fll ---- 0.001 

Fig.7 The electric displacement along the 
crack line versus x/l  for a/2fll = 
0.001 

- 4  

- 6  
i 

0.4 0.8 1.2 1.6 2.0 
x/l 

Fig.8 The stress along the crack line versus 
x/l for a/2fll ---- 0.005 

The  following observations can be made: 

(1) For s ~ 0, it can be proved tha t  the semi- 

infinite integrat ion in Eqs.(51) and (52) and the series 

in Eqs.(51), (52) are convergent for any variable x. So 

the stress and the electric displacement take finite val- 

ues all along the crack line. Con t ra ry  to the classical 

piezoelectric theory  solution, it is found tha t  no stress 

and electric displacement singularity is present at the 

crack tip, and also the present results converge to the 

classical ones in regions far away from the crack tip. 

The  maximal  stress does not occur at the crack tip, 

bu t  slightly away from it. This phenomenon  has been 

thoroughly  subs tant ia ted  in Ref.[22]. The  distance 

between the crack tip and the m a x i m u m  stress point  

is very small, and it depends on the crack length and 

the  lattice parameter .  

- 2  

- 4  

S 
~ 

i , i , 

0.4 0.8 1.2 1.6 2.0 

x/1 

Fig.9 The stress along the crack line versus 
x/l for a/2~l = 0.01 

(2) The  stress at  the crack tip becomes infinite 

as the a tomic distance a -+ 0. This is the classical 

cont inuum limit of square root  singularity. This can 

be shown in Eqs.(44), (45). For a --+ 0, erfc(6s) = 1, 

Eqs.(44), (45) may  reduce to  the dual integral equa- 

tions for the same problem of classical piezoelectric 

materials. These dual  integral equations can be solved 

by using the singular integral  equat ion for the same 

problem of the local piezoelectric materials problem. 

However, the stress and the  electric displacement sin- 

gularities are present at the crack tip in the local 

piezoelectric materials problem as is well known. 

(3) For a/fl = constant ,  viz., the a tomic  distance 
does not  change, the value of the stress concentra-  

tions (at the crack tip) increases with the increase 

of the crack length (a/2fll will become smaller wi th  
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the increase of the crack length 1). Experiments also 

indicate that the piezoelectric materials with smaller 

cracks are more resistant to fracture than those with 

larger cracks. 

(4) The significance of this result is that  the frac- 

ture criteria are unified at both the macroscopic and 

microscopic scales, viz., it may solve the problem of 

any scale cracks (that is, any value of a/2~l).  

(5) The stress concentration occurs at the crack 

tip as stated in Refs.[9,10], and this is given by 

"ryz(1, 0)/~-o = - c 3 / v / a / 2 ~ l  (53) 

where c3 converges to c3 = 0.37. 

(6) The dimensionless stress field is found to be 

independent of the materiM parameters. They just 

depend on the length of the crack and the lattice pa- 

rameter. However, the electric displacement is found 

to depend on the loads, the length of the crack and 

the lattice parameter. 

(7) The results of the stress and the electric dis- 

placement at the crack tip tend to decrease with the 

increase of the lattice parameter as shown in Figs.2 

and 3. 

(8) The electric displacement for the permeable 

crack conditions is much smaller than the results for 

the impermeable crack conditions as shown in Figs.3 

and 5. 
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